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Transonic Shock-Free Aerofoil Design
by an Analytic Hodograph Method

J.W. Boerstoel* and G.H. Huizingt
National Aerospace Laboratory (NLR), Amsterdam, The Netherlands

A design method for transonic shock-free aerofoils using hodograph theory is sketched. The method is based
on the approximate solution of Tricomi boundary value problems for the elliptic-hyperbolic hodograph
equations of transonic aerofoil flows on a two-sheeted hodograph surface. Special attention is paid to a num-
erical approximation method generating nearly always closed aerofoils. The use of the computer programs in
an aerodynamic design process is illustrated by an example. Several examples of computed aerofoils (some of
them advanced) demonstrate that the method is flexible and powerful.

I. Introduction

IN 1969 it became clear that the hodograph method for
profile design used at NLR should be extended to permit the

calculation of advanced aerofoils. The class of transonic
shock-free quasi-elliptical hodograph aerofoils of Nieuwland'
developed in the 1962-1970 period became too limited (from
an engineering point of view) because, for practical reasons,
the number of parameters for control of the aerofoil shapes
had to be restricted to too small a number.J

The difficulties originate from the fact that the method
transforms incompressible flows around aerofoil-like shapes
into transonic flows around aerofoils. Therefore, this ap-
proach should not be used when a design method for arbitrary
transonic shock-free aerofoils is desired.

A calculation method for the design of transonic shock-free
aerofoils of arbitrary shape can also, at least in principle, be
based on the solution of Tricomi boundary value problems
for the mixed elliptic-hyperbolic hodograph equations by con-
structive approximation methods (see, e.g., Ref. 4). Such a
calculation method can only be successful from an
engineering point of view if the class of aerofoils that can be
generated is large, and thus if the boundaries can be chosen
sufficiently general. Since suitable solution methods were not
available, many questions concerning the existence of
solutions, the approximation method, convergence of sequen-
ces of approximations and numerical performance (speed and
accuracy) of algorithms had to be considered and answered
(at least partially).

Tricomi boundary value problems can in principle be ap-
proximately solved by various methods and a choice had to be
made in this respect. The methods considered were finite dif-
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JNieuwland's class of quasi-elliptical aerofoils contains, in fact,

about fifty parameters; nine parameters have been investigated, the
other parameters are given fixed values because systematic variation
would be an impossible task. The same argument applies to
Takanashi's method,2that was later developed. The hodograph
method of Korn and Garabedian3 has the same drawback. In order to
be able to compute a large class of aerofoils they increased the number
of parameters to over 70, by adding special solutions. However, the
determination of the parameters is then very difficult because these
have to be balanced extremely carefully.

ference techniques and truncated series of particular
solutions. Because the approach with truncated series would
permit the use of the vast experience gathered at NLR with the
Lighthill-Nieuwland hodograph theory for quasi-elliptical
aerofoils,] this approach was preferred. Moreover, it could be
expected that ultimately, accuracy problems could be better
kept under control with this approach.

Having selected this approach, two major problems had to
be faced. The first was the method of determining the coef-
ficients of the particular solutions in the truncated series, a
reliable method not being available. Using mathematical
model studies10 (the solution of Dirichlet boundary value
problems for Laplace's equation), this problem could be
satisfactorily solved. A second problem was to guarantee that
in supersonic regions of the flow, the aerofoil contour would
be a continuous curve. It may be argued from a mathematical
point of view that this is not necessarily the case. It will be
shown that this problem has also been solved satisfactorily in
a practical sense.

The first purpose of this paper is to outline some new
mathematical concepts that were used in the computation
method. A second purpose is to illustrate the use of the
corresponding computer program set in an aerodynamic
design process and to present examples of computed
aerofoils.

II. Theory
Sketch of Tricomi Boundary Value Problem

It is known that transonic shock-free aerofoils in potential
flows can be represented by solutions of a linear partial dif-
ferential equation of elliptic-hyperbolic type for the stream
function ^h

(1)

where Mis the local Mach number and 9 the local flow angle.
Such solutions are found to be defined on a two-sheeted (M,
9) surface with a point (A/*, 9*) as branch point. The (M, 9)
surface is the hodograph surface.

Let us first sketch the structure of the solutions in terms of
the hodograph variables and the relation between the physical
plane of the flow around the aerofoil and the hodograph sur-
face (see also Fig, 1).

1) (M, 9) are polar variables on the hodograph surface,
with Mas radial variable.

2) The hodograph surface may be divided into two sheets
by a cut that begins at the branch point (M*, 9*) and extends
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Fig. 1 Structure of hodograph of shock-free transonic flow.
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outward along the radius 9 = 9*. We will distinguish between
the sheets by calling them upper and lower sheet.

3) The image ^ = 0 of the aerofoil on the hodograph sur-
face is a closed curve C encircling the branch point. The ex-
terior of the aerofoil in the physical plane maps onto the in-
terior of the aerofoil image Con the hodograph surface.

4) The stream function ^ of the flow has a freestream
singularity of known type at infinity in the physical plane, and
thus at a point (M^ ,0) on one of the sheets of the hodograph
surface (M^ freestream Mach number). We will define that
the sheet containing the freestream point (M^, 0) is the upper
sheet.

5) The freestream line ^ = 0 that extends in the physical
plane from the front stagnation point to infinity upstream
corresponds to a curve on the upper sheet from the origin to
(Moo, 0) where ^has its freestream singularity. Similarly, the
freestream line ^ = 0 from the tail point downstream to in-
finity maps onto a curve connecting the tail point image on
the lower sheet with (M^, 0) on the upper sheet.

6) The mapping from the hodograph surface (M, 9) to
the physical plane z=x + iy is given by a relation of the form

(2)

where M is a known linear operator (see Ref. 5, article 17.3)
that need not be specified further here.

The Tricomi boundary value problem for transonic shock-
free aerofoil design can now be sketched. Assume that the
aerofoil image C is given, together with the freestream Mach
number M^ and the location of the branch point (M*, 9*).
Assume also that the freestream singularity in the stream
function has been split off by putting

(3)

where 3r b is a given basic stream function having the desired
freestream^singularity and satisfying the partial differential
equation L ^=0. The stream function Va must then also
satisfy inside the aerofoil image C the partial differential
equation

GIVEN: Moo, (M*, 6*) , <fb AND C

REQUIRED: I $ a «0

$a+?b = 0 ON C

Fig. 2 Tricomi boundary value problem.
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FOR $Q AND COMPUTE
AEROFOIL DATA

MODIFY CURVE C TO IMPROVE
AEROFOIL CHARACTERISTICS

(4) Fig. 3 Aerodynamic design process.
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Furthermore,
relation

has to satisfy on the aerofoil image C the

(5)

This implies that a boundary value problem for the stream
function 3?a has to be solved if tya is not known. 3ra may be
called the additional stream function.

It is well known4 '6 that the boundary condition5 cannot be
prescribed on the entire boundary curve C. To avoid an over-
determined problem, the boundary condition should not be
prescribed on a segment of curve C in the supersonic part of
the hodograph surface, that lies between two characteristics
of opposite class of the differential operator L and coincide in
some arbitrary point on the sonic line (see Fig. 2).

Tricomi Boundary Value Problem and Aerofoil Design

A transonic shock-free aerofoil may be determined by
solving first a Tricomi boundary value problem for the ad-
ditional stream function 3ra for a given freestream Mach
number, branch point (M*, 0*), basic stream function ^/?,
and aerofoil image C. Next the aerofoil contour in the
physical plane is determined from Eq. (2) and the pressure
distribution in the shock-free flow is obtained.

The aerofoil designer is thus confronted with an algorithm
having as input a few parameters (M^, M*, 9* and those
parameters that define the basic stream function ^fh and an
assumed aerofoil image C on the hodograph surface, and as
output the aerofoil geometry and the corresponding pressure
distribution. He may then iterate to a transonic shock-free
aerofoil having required physical properties (Fig. 3). The
required physical properties concern for example the pressure
distribution (peaky or nonpeaky, rear-loading, pressure
gradients) and desired geometrical properties (nose shape, tail
shape, location of curvature peaks, etc.).

It will be evident that the design process is only useful if,
from the engineering point of view, 1) the position of the
boundary contour can be varied within sufficiently wide
limits; 2) the empirical rules are simple; and 3) the numerical
performance (speed and accuracy) of the algorithm is suf-
ficient.

Choice of Singular Solution ^h

A singular solution ^h for transonic flows can be derived
from a singular solution for incompressible flows with the
Lighthill-Nieuwland transformation technique . 1 % 7 A survey of
the principles of the technique is given by Yoshihara.8

The singular solution for incompressible flows is defined as
the sum of five terms:

„ = 7/770,, (6)

where F is the circulation of the flow, f* the complex con-
jugate velocity in the branch point of the hodograph of the in-
compressible flow, and the other variables are defined below
(f being the complex conjugate velocity of incompressible
How):

£= ( 7 _ f / f * ) ' > (8)

(9)

(10)

f <
^=

J

(11)

(13)

(14)

It can be seen that the terms with 4>dip and (/>/„ are intended
to guarantee that ¥b has the desired singular behavior at the
freestream singularity in incompressible flow. The other
terms are chosen in such a way that the basic solution becomes
that of the flow over a thin ellipse-like shape. Further, it can
be seen that the two-sheeted nature of the hodograph surface
has been taken into account by removing the branch point by
a conformal mapping from the hodograph surface to a £
plane. There are still other reasons for the splitting up into the
five terms which are of a mathematical technical nature; they
will be discussed in Ref. 9.

The singular solution for transonic flows is derived from
the incompressible singular solution using (with some sim-
plifying modifications9) the Lighthill-Nieuwland trans-
formation technique for each of the five terms. The final
result is a large number of complicated series representations
for 3?b and Zb which are one-valued on a two-sheeted
hodograph surface for transonic flows, with some point (M*,
6 *) as a branch point.

Choice of Regular Solution ¥a

The Tricomi boundary value problem will be solved ap-
proximately by representing ^fa by a finite sum of linearly in-
dependent solutions ^fan:

c y n 5")*~ n an \l ̂ )

(16)

The partial differential equations are then automatically
satisfied (by linearity of L) while the coefficients cn are
available to approximately satisfy the boundary condition.
They will be determined from the boundary condition by a
special method.

When the coefficients cn in the additional stream function
have been found the physical plane variable, z can be found
with the linear operator M:

(17a)

(17b)

The regular solutions 3ran with corre-
sponding formulas for M ^an for transonic flows are also
defined from corresponding regular solutions for in-
compressible flow by the Lighthill-Nieuwland transformation
technique.7 For incompressible flows we chose as in-
compressible regular solutions the real and imaginary parts of
the expressions

£w = (7-f/n*m (18)

The final results are series representations for the regular
solutions tyan for the transonic flows and for the corre-
sponding M ^an. These series representations are one-valued
on the two-sheeted hodograph surface for transonic flows.
Each ^f an is an exact solution of L ^fan = 0.

III. Numerical Solution of Tricomi
Boundary Value Problem

The Tricomi boundary value problem for the regular
solution ^fa can be approximately solved by suitably deter-
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mining the coefficients cn in Eq. (15). Our numerical ex-
periments revealed that all available standard methods for the
determination of these coefficients failed to be successful. The
problem was that the aerofoils (in particular in the subsonic
parts) were usually not closed. Some more details will be given
when discussing numerical results of Fig. 8 in Sec.JVII._

The point to be observed is that making tya + 3fb ap-
proximately zero on the assumed aerofoil irnage C is not
essential. What is important is that the curve C", where the
condition ^f a + ̂ b =0 is satisfied exactly (this curve lies close
to the assumed aerofoil image C in a good approximate
solution) must be closed. For it can be shown that the aerofoil
(which corresponds to the curve C' and not to the assumed
aerofoil image C) is then also closed. On the other hand, if C'
is not closed, the aerofoil will not be a closed curve either.

The mathematical model studies10 mentioned in the In-
troduction have revealed that a suitable method for the deter-
mination of the coefficients cn, giving (nearly always) closed
aerofoil images C" near the assumed aerofoil image C, con-
sists of the minimization of a special error functional that
measures the difference between C and C' (see Fig. 4; note the
removal of the branch point of the hodograph surface by the
mapping to a £ plane):

(19)

REGULARIZED
HODOGRAPH SURFACE }

NORMAL DISTANCE n(S)

"ASSUMED AEROFOIL IMAGE C
AEROFOIL IMAGE OBTAINED C'

MAPPING FROM HODOGRAPH SURFACE TO f- PLANE:

= <b w ( s ) { n ( s ) } 2 d s

~ — 112 1 ' n U ^ ^
* . r i - /X ) 1 ' . - i t e -e* ) - | 1 ' , •f.-'W • r

2, ,
L I f / J M l - i j lM*

Fig. 4 Definition of normal distance 72(5) on regularized hodograph
surface [Eq. (19)].

where w(s) is a given nonnegative weight function (usually
= 1), and n(s) the distance between the curves measured along
normals to the assumed aerofoil image C. This error func-
tional is discretized by the trapezoidal rule, and the distances
n(s) are computed from linear approximations to the stream
function as indicated in Fig. 5. The result is

(20)

where AA, are the arc lengths between successive given points
on C, ndk are given distances on normals to C in the given
points on C, and ̂  ko and ^f ki are values of ̂  indicated in Fig.
5. Minimization of this error functional by varying the coef-
ficients cn using a standard method11 gives satisfactory
results.

IV. Accuracy of Computed Final Aerofoil Data
When the coefficients cn have been determined, the aerofoil

can be determined by computing a sequence of points. In each
point the equation ^f (M, 9) =0 is solved at a chosen fixed
value of M for 9 by the regula falsi. Next, z(M, 9) and the
aerofoil curvature are computed from analytically dif-
ferentiated series expansions for the derivatives of the stream
function ^. The series representations for ^ and z are sum-
med either directly or with a convergence accelerator (the
complex e algorithm).

Because the infinite series representations for ^ and z are
exact solutions of the hodograph equations, the only errors in
the final results are due to truncation of the regula falsi
process and to truncation of the series expansion when sum-
ming directly. When the series are summed by the e algorithm,
errors arise that can be considered to be of stochastical
nature; the magnitude of these errors can be easily estimated
and controlled. Other data (Chaplygin functions, coefficients
in series representations) are computed to such a high
precision that they cannot affect the precision of the final
data.

The accuracy of the aerofoil contour data is 10~4 to 10~5

of the chord (without smoothing interpolation operations). If
desired, it is possible to compute coordinates, slopes, and cur-
vatures in about 400 points. This is sufficient for engineering
purposes.

LINEAR APPROXIMATION TO
if(n)IN POINT k

ASSUMED AEROFOIL
IMAGE C

POINT ON AEROFOIL
IMAGE C'

Fig. 5 Definition of variables in approximate error norm.

V. Use of the Computer Program Package
The computer program package consists of nine ALGOL

programs performing calculations and data transfer. The
package makes use of one tape and four permanent files for
data to be retained. Sixteen files are used for input and output
of data.

For a specific aerofoil design the package has to be
operated in three stages:

1) About seven parameters that determine the basic
stream function ^b (Mx, M*, 9*, flow circulation F, e, etc.)
have to be determined in such a way that the hodograph seems
a reasonable starting point to obtain the desired aerofoil. This
is done by computing lines ¥b =0 in the regularized
hodograph plane f defined in Fig. 4. (The choice of 3rb is
sometimes checked by computing explicitly the aerofoil-like
shape defined by the lines ̂ b = 0).

2) An assumed image C of the aerofoil is then defined on
the regularized hodograph surface £, the corresponding coef-
ficients cn are computed, and the aerofoil image C' where ^
= 0 is estimated.

3) When the aerofoil image C' lies close enough to the
assumed aerofoil image C, the aerofoil shape and other data
corresponding to C' are computed.
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Fig. 6 Examples of shock-free transonic aerofoils.

When a particular aerofoil has to be designed, the input of
the computation (the parameters that determine the singular
solution ^fb and the assumed aerofoil images C) has to be ad-
justed a few times in order to obtain an acceptable aerofoil.
Experience has shown that—when the parameters of Sk/, have
been fixed—usually only parts of the assumed aerofoil images
C are redefined. This fact is used to save computation time by
using data that were stored on tape in previous runs of the
program set.

VI. Cost Experience
It was found that sufficient engineering accuracy can be

achieved without trouble, and that computations with the
program package can be well managed by aerodynamic
engineers. (Only general knowledge of the mathematical
theory and the numerical processes is needed.) Man-hour

costs for aerofoil design are therefore considered to be ac-
ceptable.

For a typical calculation the system is run once to fix the
parameters in the basic solution ^bt once to fix the assumed
aerofoil image C, and once for a calculation of the aerofoil
shape (in about 130 points coordinates, slopes^ curvatures,
and pressures). On a GDC 6600 computer this would require
about 1500 central processor seconds and 600 input-output
seconds with an average of 26 K core store. The program set is
operational on the smaller CDC Cyber 72 computer.

VII. Examples and Numerical Details

A survey of aerofoils computed until now is given in Fig. 6.
The aerofoils cover a range of freestream Mach numbers,
thickness ratios and lift coefficients, and have more or less
rear loading. It may be concluded that from an aerodynamic



SEPTEMBER 1975 TRANSONIC SHOCK-FREE AEROFOIL DESIGN 735

f 2 VARIATIONS (CONTROLS
STRENGTH OF SINGULARITIES
OUTSIDE CONTOUR)

UPPER SIDE OF AEROFOIL

|( ASSUMED ) REGULARIZED HODOGRAPHS

Fig. 7 Illustration of the design process of an aerofoil, a) Results of a
parameter study for Vb. b) Choices of assumed aerofoil images for
two aerofoils, c) Examples of transonic shock-free aerofoils.

point of view, a sufficiently wide range of interesting aerofoils
can be computed.

An illustration of the design process of an aerofoil is given
in Fig. 7. Results of a parameter study for singular solution
tyh are presented in Fig. 7a. The heavily drawn line represents
the ^ />=0 line of the singular solution ultimately chosen.
Figures 7b and 7c show the optimization to an assumed
aerofoil image C giving an acceptable aerofoil shape.

Fig. 8 Patterns of streamlines
ceptable, b) meaningless.

UPPER SIDE
AEROFOIL

' = 0 (incompressible flow): a) ac-

| REGULARIZED HODOGRAPHS |

- ———-C-ASSUMED AEROFOIL IMAGE
-STREAMLINES r-0
C-EXACT AEROFOIL IMAGE

AEROFOIL H 7307202

C

Fig. 9 Pattern of lines ^ =0 for transonic aerofoil on re«ulari/ed
hodograph surface.
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Some numerical details are shown in Figs. 8 and 9. Figure 8
shows (for the case of incompressible flow) what can be
wrong with the aerofoil images C' on the regularized
hodograph surface. Outside the aerofoil image C' (^ = 0)
there may be many other streamlines ^ — 0 that map into the
interior of the aerofoil on the physical plane in a good ap-
proximate solution of the boundary value problem (Fig. 8a).
However, in a meaningless approximate solution (Fig. 8b),
the aerofoil image C' is not a closed curve. The situation may
be wrong in quite more complicated ways" as indicated in Fig.
8b. In Fig. 9, acceptable results are shown for one of the tran-
sonic aerofoils, of Fig. 6. In addition, the small differences
between the input and output curves C and C' can be in-
spected. The error functional equation (19) suppresses
possible gaps like those of Fig. 8b.

At the end of Sec. Ill it was mentioned that the boundary
condition ^ = 0 on the assumed aerofoil image C should not
be prescribed on a certain segment of C in the supersonic
region of the flow. This can be realized by choosing some
suitably chosen weights wk=0 in expression (20). However,
in practice this is often not necessary, and a choice wk = 1 is
usually possible. This somewhat surprising procedure is
possible for numerical reasons: in the supersonic regions ̂ b is
"large" compared to ^a (in incompressible flow tyb is large
in corresponding regions due to the singularities of <j)e at f=
± f*/e; in transonic flow these singularities disappear, but the

general behavior of %b is similar to that for incompressible
flow). Hence, in the supersonic regions the general character
of the profile is determined by tyb. For this purpose, too, $e
(with its singularities at f = ± f*/e outside the aerofoil images)
has been incorporated in tyb.

VIII. Conclusion
Based on hodograph theory, a computer program package

has been developed that can be used for the aerodynamic

design of shock-free transonic aerofoil sections. The program
package provides final results of sufficient accuracy at ac-
ceptable costs and seems powerful and flexible enough to
cover a wide range of engineering applications.
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